A General Duality Principle for the Sum of Two Operators
نویسنده
چکیده
A general abstract duality result is proposed for equations which are governed by the sum of two operators (possibly multivalued). It allows to unify a large number of variational duality principles, including the Clarke-Ekeland least dual action principle and the Singer-Toland duality. Moreover, it offers a new duality approach to some central questions in the theory of variational inequalities and maximal monotone operators.
منابع مشابه
Duals and approximate duals of g-frames in Hilbert spaces
In this paper we get some results and applications for duals and approximate duals of g-frames in Hilbert spaces. In particular, we consider the stability of duals and approximate duals under bounded operators and we study duals and approximate duals of g-frames in the direct sum of Hilbert spaces. We also obtain some results for perturbations of approximate duals.
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملA Forward-Backward Projection Algorithm for Approximating of the Zero of the Sum of Two Operators
In this paper, a forward-backward projection algorithm is considered for finding zero points of the sum of two operators in Hilbert spaces. The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly monotone operator and a maximal monotone operator. We apply the result for solving the variational inequality problem, fixed po...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملUniform Boundedness Principle for operators on hypervector spaces
The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.
متن کامل